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The breakup of a liquid in a turbulent stream of a dispersion medium is an inseparable 
part of all technological processes connected with the formation of aerosol and emulsion sys- 
tems. For the case of isotropic turbulence, when the dynamics of the process of variation 
of the size distribution N(v, t) of particles of the disperse phase is determined only by 
the processes of their breakup, the function N(v, t) is a solution of the kinetic equation 

aNat ( ' '  t) _ i ! (~o) n (v, co) N (m, t) do~ -- J (v) N (., t), (0.1) 

where f(v) is the frequency of breakup of particles in the size range iv, v + dv); n(v, ~) 
is the probability of the formation of a particle in the size range iv, v + dv) in the break- 
up of a particle with a size in the range (~, ~ + dm). 

The purpose of the present article is to determine the functions f(v) and n(v, ~), solve 
Eq. (0.i), and analyze the results obtained. According to the author's information, the prob- 
lem of investigating the dynamics of the process of breakup of a liquid has not been analyzed 
before in such a statement. 

i~ .... Determination of the Breakup Frequency 

To find the function f(v) we use the following model. We shall assume that the breakup 
of a single particle in a turbulent stream is fully determined by the fluctuations of energy 
dissipation in its vicinity. Now if the value of the dissipation energy averaged over a vol- 
ume on the order of the size of a particle exceeds the critical value a(v) then the act of 
breakup occurs. Henceforth we assume that the distribution of energy dissipation in the vicin- 
ity of a breaking-up drop is uniform with an average value g(t). 

Since, according to the adopted model, the breakup frequency can be treated as the proba- 
bility of the random process e(t) crossing the level a(v) per unit time, under the condition 
that E(t) < a(v) at the starting time, we write it in the form 

]iv)  = l i r a  I Pie(t) <a(v), e ( t ~ h t ) > a ( v ) }  (i.I) 
~ o  A--T ~ )  ~ E (~T " 

The numerator on the right side of this equation corresponds to the probability that 
the average value of the energy dissipation in the vicinity of the particle under considera- 
tion at the time t is less than, and at t + At is greater than, the quantity a(v). 

Expanding sit + At) in a series in At and taking the process as stationary, we convert 
the right side of Eq. (i.i) to the form 

~p~ (~ (~), ~) d~ 
i(~)= o ~ , 

p(e) d8 
8 

where p2(g, ~) is the combined distribution density of the quantity ~(t) and its :rate of 
change ~(t) at the same time; pig) is the one-dimensional distribution of the quantity sit). 
To determine the probability p2(E, ~) we use the well-known relation [I] 

z~t-~o y 8, 8 -- 7 8 (1 .2 )  
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where g 2 ( g l ,  E 2) is the combined distribution density of the random quantity g(t) at different 
times. 

On the basis of an analysis of theoretical and experimental results on the investigation 
of the process of energy dissipation, it was concluded in [2] that p(g) is well approximated 
by a logarithmic normal distribution law. Following this result, we write p(s) in the form 

1 { t 
p(e) ~ a e e x p  - -  (In• 2 a 2 = 1 1 1 %  +4 , •  7 ~ (1.3) 

S 

where E and o2e are the mean value and the dispersion of the process of energy dissipation. 
Assuming that the process e(t) is interconnected one-to-one with a stationary Gaussian pro- 
cess x(t) with a zero mean value, a dispersion a2, and a correlation function R2x through 
the transformation x = in (~e) of the two-dimensional distribution density g~(x(t), x(t + 
�9 )), we obtain 

g2(el, e~) = 2a~2~l~2exp 2~2~2 [(ln~el)~ 2Rxln•215 
(1.4) 

+ (In • e~ = ~ (e), ~ = ~ (t + ~), ~= = i -- ~,.~, 

In such a transformation the correlation functions of the processes e(t) and x(t) satis- 
fy the equality 

~ (~) = oxp { ~  (~)} - 
e exp{a 2 } -  i ( 1 . 5 )  

To c a l c u l a t e  t h e  combined  d i s t r i b u t i o n  d e n s i t y  p 2 ( r  ~) one h a s  t o  know t h e  b e h a v i o r  
o f  t h e  c o r r e l a t i o n  f u n c t i o n  R2g(~)  o n l y  a t  s m a l l  v a l u e s  o f  ~. S i n c e  t h e  p r o c e s s  o f  e n e r g y  
d i s s i p a t i o n  i s  a p h y s i c a l l y  d i f f e r e n t i a b t e  p r o c e s s  w i t h  a c o r r e l a t i o n  f u n c t i o n  d i f f e r e n t i a -  
b l e  a t  z e r o ,  we s h a l l  a s sume  t h a t  a t  s m a l l  v a l u e s  o f  

B~('r) ~ t  - -  To ( 1 . 6 )  

[To i s  t h e  t i m e  c o n s t a n t  o f  c o r r e l a t i o n  f o r  t h e  p r o c e s s  E ( t ) ] .  Under  t h e  a s s u m p t i o n  t h a t  
t h e  c o r r e l a t i o n  t i m e  d e p e n d s  o n l y  on t h e  mean v a l u e  o f  t h e  e n e r g y  d i s s i p a t i o n  and t h e  v i s c o s -  
i t y  v o f  t h e  d i s p e r s i o n  medium, f rom d i m e n s i o n a l i t y  t h e o r y  we o b t a i n  To = v/v-~.  

R e l a t i o n s  ( 1 . 4 ) - ( 1 . 6 )  e n a b l e  us  t o  expand  t h e  r i g h t  s i d e  o f  Eq. ( 1 . 2 ) .  We w r i t e  t h e  
r e s u l t  o f  t h e  c a l c u l a t i o n s  in  t h e  fo rm 

p2(e~ ~,) = exp ~,T). - -  5 ( In ~e)2 ,, c = I - -  exp{ - -a=} .  ( 1 , 7  ) 

Substituting (1.7) and (1.3) into (i.i) and performing the necessary transformations, we ob- 
tain the expressions for the breakup frequency: 

c d In (I) (y)~ ( 1 . 8 )  

i i --~ ~ l~(• r = v~-~=_oo ~ dy, y =  

To find the quantity a(v) we use a model of the mechanism of breakup of drops based on 
a comparison of capillary forces and the forces of viscous friction. Such a model has been 
discussed repeatedly [3] in connection with the determination of the minimum size of the radi- 
us r 0 of drops breaking up in a turbulent stream, 

__z_._____.._ 

r0 = Y (p V ~ ) '  ( 1 . 9 )  

where o is the interphase surface tension; ~ and p are the kinematic viscosity and the dens- 
ity of the dispersion phase; y is a numerical factor on the order of unity. 

Replacing e by a(v) in (1.9) and converting from the radii to the volumes of the drops 
breaking up, we obtain 
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a @ =  ~,k~ ) t , j~v~ /~ ; ,o=-~-uo .  ( 1 . 1 o )  

We determine the quantity ~ appearing in (0.i) on the basis of the result of [4], Where the 
equality 

= o.4  

is obtained from the assumption that Millionshchikov's hypothesis is valid for the velocity 
pulsations in a field of isotropic turbulence. Substituting (i. I0) into (1.8) and calculating 
the quantity ~, we reduce the expression for the breakup frequency to the form 

t d ~ ( x ) ,  t . t J n  1.3 7,, 
f ( x )  2.03.V,2_~rodxln ~ x =~ �9 (i. II) 

T h i s  f u n c t i o n ,  p o s i t i v e  d e f i n i t e  on t h e  r e a l  a x i s ,  d e c r e a s e s  m o n o t o n i c a l l y  w i t h  an  i n c r e a s e  
i n  x .  I t  c a n  be  a p p r o x i m a t e d  w i t h  5% a c c u r a c y  by  e x p r e s s i o n s  o f  t h e  t y p e  

f . 0.798 

2,03 - ) t_ f ~2"1 for x ~ 0 .  
( 1 . 1 2 )  

The concept of the breakup frequency enables us to arrive at a definition, from the prob- 
abilistic standpoint, of the minimum size of drops which can break up in a turbulent stream. 
It seems natural to connect the minimum linear size r I of breaking-up drops with the critic- 
al breakup frequency fl, taking the latter as equal to a certain small number (0 < fl 5 i). 
Identifying f(x) with fl and v with v I in (1.12), and considering that f(x) assumes small 
values for x > i, we obtain 

ro/q ~ 0,92 exp {0~41 ~-----Tnz}, 

z = 2.03 ]/rg--~To] v 

The value of the minimum size r 0 for breaking-up drops generally accepted today exceeds 
severalfold the quantity r i (fl ~ 0.01). Here the ratio r0/rl increases monotonically with 
an increase in the intensity of turbulization of the stream (Fig. I, curve i). Equality of 
r 0 and r i is reached when the condition T0f i = 0.12 is satisfied, which corresponds to values 
of fl > I in the region of developed turbulence. Curves 2 and 3 correspond to the ratios 
r*/rl of two values of the drop sizes calculated at different breakup frequencies (0.01 
fl < f*1; fl/f2 = 10-3 and 10 -4 ) as functions of the intensity of turbulization of the stream. 
As seen from these graphs, a decrease in the value of fl by even three orders of magnitude 
leads to a change in r I by a factor of no more than 1.7. Such a weak dependence of r I on 
fl enables us (without the danger of significantly affecting the value of ri) to choose any 
of the values of 10 -2 , 10 -3, or even 10 -4 for fl, satisfying our concepts of the smallness 
of the frequency of breakup of drops, the breakup of which is hardly observed. 

2. Determination of the Function n(v~ ~) 

In small regions (on the order of the drop size) of a turbulent stream a large number 
of hydrodynamic situations can occur randomly, corresponding to different mechanisms of break- 
up, and hence to different variants of breakup. Therefore, the function n(v, m) describing 
the breakup of a single drop is probabilistic in its nature, which is taken into account in 
its determination. 

Suppose that a single drop of volume w can give rise to up to k daughter drops with vol- 
umes vi (i = i, k). We shall characterize the probability of formation of these drops by a 
multidimensional distribution density p(vl, v z ..... vk, ~). In this case the probability of 
formation of a drop of a fixed volume v will be 

(2.1) 

�9 . .  dvi- ldo~+l . . .  dub. 
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By virtue of the equal justification of all vi, the probability density p(vl, ..., vk, 
~) must be a symmetric function of these variables, while all the integrals in (2.1) are equal 
to each other. Since the value of each integral in (2.1) is a one-dimensional distribution 
density g(v, ~), we write Eq. (2.1) in the form n(v, m) = kg(v, m). 

Numerous observations of acts of the breakup of single drops [3] under different hydro- 
dynamic conditions indicate that several (most often two) approximately equal drops and one 
or several smaller drops, so-called satellites, are usually formed in a breakup. But in none 
of the papers has a correlation been noted between the different variatns of breakup and the 
sizes of the broken-up drops. The absence of such a connection allows us to assume that the 
function n(v, m), for fixed properties of the disperse and dispersion phases, depends only 
on the ratio of the quantities v and m, and it can be written in the form 

To conserve the total volume of the daughter drops, the function n(v, ~) must satisfy 
the condition 

vn (v~ ~) dv = m~ (2 .2 )  
0 

from which it follows that the mean value of the distribution density g(y) is 

1 Y=S I 
yg (y) dy = 7 .  

o 

On the basis of the above-indicated observations of the breakups of single drops one 
can assume that the function g(y) is, as a rule, a bimodal functionwith two clearly expressed 
maxima, one of which lies in the region of the sizes of the satellites and the other in 
the region of the sizes of the larger drops formed in the breakup. Taking the function g(y) 
as bimodal, we represent it as a sum of two weighted unimodal distribution desnities gl(Y) 
and ga(y), defined in the interval (0, i) and having mean values Yz = vz/m and Y2 = v2/m: 

n(,~, ~) = kl ~ g ~  ~ )  + ~ , 

In their physical meaning the quantities kz and k 2 correspond to the mathematical ex- 
pectations of the total numbers of daughter drops formed in the vicinities of the sizes Yz 
and y=. To satisfy the condition (2.2), the values of ki and Yi (i = I, 2) must satisfy the 
equality kly I + k=y2 = i. In the limiting case, when the dispersions of the distribution 
densities gz(Y) and g=(y) approach zero, which corresponds to the absence of scatter in the 
sizes of the daughter drops (the determinate model of breakup), Eq. (2.3) can be reduced to 
the form 

nO', 00 =kl6(L~ - y jm)-~  k28(V-- y2~), ( 2 . 4 )  

where  6 ( x )  i s  t h e  d e l t a  f u n c t i o n .  

I f  we t a k e  t h e  f u n c t i o n  n ( v ,  m) n o t  a s  b i m o d a l  b u t  a s  m u ! t i m o d a l  o r ,  i n  t h e  c a s e  o f  i t s  
b i m o d a l i t y ,  we do n o t  " c o m p r e s s "  e a c h  o f  i t s  component  d i s t r i b u t i o n s  t o  t h e  mean v a l u e  b u t  
a p p r o x i m a t e  i t  by a s u i t a b l e  d i s c r e t e  d i s t r i b u t i o n ,  t h e n ,  i n s t e a d  o f  ( 2 . 4 ) ,  we o b t a i n  
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i = l  i = l  {=1 
(2.5) 

~. Solution of the Kinetic Equation 

We analyze the solution of Eq. (0.i) only for the case when a drop is broken exactly 
into halves without the formation of satellites. The function n(v, w) corresponding to this 
breakup model, in accordance with its definition (2.4), has the form 

n(v, ~,) = 26(v - -  i).5~). 3 . 1 )  

S u b s t i t u t i n g  ( 3 . 1 )  i n t o  ( 0 . 1 )  and  c a l c u l a t i n g  t h e  i n t e g r a l ,  we o b t a i n  

ON(v, t)/Ot = 2/(2v)N(2t~, t) --/(@V(u, t). 3 . 2 )  

From the structure of this equation it is seen that its general solution can be repre- 
sented in the form of a sum of independent particular solutions with discrete spectra. In 
this case, if v is the maximum size of the drop in the initial condition for any of these 
solutions, then the solution will be determined at the points 2-Jv (j = 0, 1 .... ). Natural- 
ly, the initial condition for this solution must also be determined at these points. 

Let us examine the procedure for obtaining one of these solutions. Writing Eq. (3.2) 
for each of the points of determination of the solution, we have the infinite system of equa- 
tions 

_aa~ "Ni = - -  q)iNi, ~ N~ = 2 ~ i - i N i - i  - ~ N i ,  i = 2~ 3~ , . .  ~,: 

t , , - t  , 2.03 ~2-~ Tof(z~) , 2.03 V~.~ To": N~ = N (z~, z)~ z~ = .. ~ ,  qh = - . 

and solving them successively, starting with the first, we obtain 

i--1 

Ni (z) = cie-~i~, N~(~) = ~ c j ~ j e - ~  ~ + c ie -~ i~ ,  ~ = 2~ 3~.. .~ 
j= i  ' (3.3) 

The c o n s t a n t  c o e f f i c i e n t s  c i  a r e  d e t e r m i n e d  by  t h e  i n i t i a l  c o n d i t i o n s  and  a r e  t h e  s o l u -  
t i o n  o f  t h e  s y s t e m  o f  l i n e a r  e q u a t i o n s  

i--I 

N 1 (0) = ci, N i (0) = ~ cja~j + c~,, 
j=l 

= 2, 3,: ...,: 

by the successive solution of which we find 

{--I 

ci = N, (Oh c, = Ni (0) -- ~ c)=ij, ~ = 2,~ 3, �9 

j--I 

On the basis of the particular solution (3.3) we can construct an algorithm for deter- 
mining the general solution of Eq. (3.2). First we consider the case when the initial condi- 
tion for Eq. (3.2) is given in the form of a lattice function F(v), determined at an ordered 
system of points vi satisfying the condijtion vi > vi+i. This function can always be repre- 
sented in the form of a sum of lattice functions, each of which will determine the initial 
condition for a particular solution (3.3). We calculate the components of the sum using 
the following recurrent procedure. In the first step we isolate the initial condition Fi(v) 
for the first particular solution, which is determined at the points 2-ivi (i = 0, I, 2 .... ). 
Then we calculate the difference F(v) - Fi(v) and, identifying it with the original function 
F(v), we similarly find the initial condition for the second particular solution, etc. The 
sum of the particular solutions with these initial conditions corresponds to the solution 
of Eq. (3.2) with the initial condition in the form of the function F(v). 
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If the initial condition is given in the form of a continuous function, then by approxi- 
mating it with a lattice function we reduce the problem to the preceding one. 

In investigation the solution of Eq. (2.5) it is of interest to examine its dependence 
both on the breakup time and on the form of the initial conditions. For this purpose we cal- 
culated solutions of Eq. (3.2) with initial conditions in the form of a monodisperse distribu- 
tion concentrated at the point z = v/m 0 and of a uniform distribution in the interval [z, 
z/2). The value of z was varied in the range of 10-106 . In the calculations the uniform 
initial distribution was approximated by a lattice function with i0 ordinates of equal ampli- 
tude, distributed with a uniform step on a logarithmic scale of z. 

It was established by a direct test that a twofold increase in the degree of quantization 
of the initial condition leads to no more change in the results presented below than in the 

second decimal place. 

On the basis of the results obtained, we calculated the dependence of the first four 
moments for the distribution density corresponding to the solution of Eq. (3.2) on the break- 
up time and calculated the coordinates of the Johnson-Pearson diagram [5], 

where ~i is the centered i-th moment of the distribution density. 

In the calculation of the above-indicated quantities the discrete solutions of Eq. (3.2) 
were approximated through linear interpolation of theirneighboring values. All the calcula- 

tions were made on a logarithmic scale of the variable z. 

Some of the characteristic hodographs for the size distribution densities of particles, 
corresponding to solutions of Eq. (3.2) with different initial conditions, are presented in 
Fig. 2 (i is a monodisperse distribution at the point z = 106 , while 2 and 3 are uniform dis- 
tributions of z in the intervals (0.5"106-106 ) and (0.5.103-103). All the hodographs converge 
asymptotically to a normal distribution law on the logarithmic scale of drop sizes. This 
asymptotic behavior is retained for all the calculated variants of solutions. 

The result obtained is generalized to an arbitrary initial condition if one considers 
that the latter can always be approximated with any degree of accuracy by a sum of monodis- 
perse distributions. Since each of the particular solutions corresponding to a monodisperse 
initial condition converges to a normal distribution, on the basis of the central-limit theo- 
rem of probability theory, the sum of particular solutions will also converge to a normal dis- 
tribution on a logarithmic scale or to a logarithmically normal distribution on a linear scale 

of particle sizes. 

This result fully coincides with the conclusion of [6], where an asymptotic solution 
of Eq. (0.i) was analyzed under the condition that n(v, ~) is given in the form (3.1), while 
the function f(v) is constant and does not depend on the particle sizes; the desire to verify 
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this conclusion for the case when f(v) has a power-law dependence on the size of the particles 
breaking up is also expressed there. The results obtained allow us to state that the results 
of [6] are valid not only when the function f(v) has a power-law character, but even for the 
stronger dependence defined by Eq. (i.ii). 

The rate and the time of emergence of the solution at its asymptotic value are seen well 
in Figs. 3 and 4, where the time dependence of the parameters $~ and 62 is shown for solu- 
tions with different initial conditions: i) a monodisperse distribution at the point z = 
106; 2-4) uniform distributions of z in the interval(0.5-1].106~ (0.5-1].102 , and (5-10]. As 
seen from Figs. 3 and 4, at �9 > 1 the solution can be considered as practically logarithmi- 
cally normal(Sl = 0, 82 = 3). 

In Fig. 5 we present graphs of the average drop size as a function of the breakup time, 
calculated for different initial conditions: 1-3) initial distributions of z in the intervals 
(0.5-1]'106 , (0.5-i].103 , and (5-10]. It is seen that even for greatly differing initial 
conditions the mean values of the solutions at �9 ~ I0 become practically the same. 

To analyze the dependence of the width of the spectrum of drop sizes on the ]breakup time 
and the initial conditions, we calculated the graphs presented in Fig. 6. The width Az of 
the size region into which 99% of the total number of drops fall is laid out along the ordi i 
nate axis. Curves 1-3 correspond to uniform distributions of z in the intervals of (0.5-!]. 
106 , (0.5-1]'103 , and (5-10] in the original emulsion. It is seen that, just as for the time 
dependence of the mean values of the size distribution of the particles , the values of Az 
become practically the same at ~ e i0. In this case the ratio Az/z has a value of about 0.5 
in the region of T ~ i0. 
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